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Where we're going...

@ Implicit time-stepping of multi-rate nonlinear problems
@ Using Newton iteration on each time step

@ With various forms of nonlinear preconditioning
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—=—INB-NE(Coupled element-block)

Residual

|| I | 0 10 20 30 40
005 01 015 02 025 0.3 035 04 045

Global Newton iteration
(a) Porosity for SPE10 model with (b) Residual history at three early
injector in the middle and producers

time steps
in the corners

Along the way, we'll meet several nonlinear preconditioners
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Why we're going there ...

@ While the convergence rate of Newton's method is
asymptotically independent of the spatial refinement of
discretized PDEs, the embedded linear solves are not.

@ In many implicit PDE applications — reservoir modeling,
aerodynamics, combustion, etc. — the linear solves on each
time step consume 80-90% of the total execution time.

@ The linear solves also make up the most memory-demanding
and /east parallel scalable phase of the code — hence the
importance of Preconditioning'XY :-)

@ One means of reducing their consumption is to do fewer
global Newton solves. Nonlinear preconditioning replaces
some global Newton solves by smaller and better linearly
conditioned /ocal Newton solves.
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Goal: address “nonlinear stiffness”

What is stiffness?

e Formally, time-dependent systems are said to be “stiff” if the
ratio of the largest to smallest eigenvalues of the principal
modes of locally linearized systems is wide.

e i.e., different modes have widely varying decay rates or
oscillation frequencies

@ Practically, a system is “stiff” if the stability requirements
force a smaller timestep to resolve the phenomena of interest
than is required by accuracy alone.

Analogously, we call a nonlinear algebraic system “stiff” if a some
components of the Newton correction force a small Newton step,
while most components could take the full step — if the progress of
the whole is constrained by a part.
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Origin of “nonlinear stiffness”

Consider a nonlinear problem F(z) = 0 of n nonlinear equations in
n unknowns.

The multivariate Taylor expansion at any point zj gives

F(x) = F(xp) + F'(z)(x — zx) |+ O(|z — 21]]?).

where F'(x3) = J* is the n x n Jacobian matrix evaluated at .

Truncating to the boxed linear terms and setting F'(x) to zero
gives Newton’s method:

JFsk = —F(xk); 2F g 4 R
Each Newton step requires the inverse action of a typically sparse
and ill-conditioned Jacobian, typically handled by linearly
preconditioned Krylov solvers with Jacobian-vector products
approximated by directional derivatives of F'(z) — the Jacobian-free
Newton Krylov (JENK) method (Knoll & K, JCP, 2004).
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Origin of “nonlinear stiffness”

When high-order terms dominate, the linear model is not a suitable
approximation to F'(x).

@ Strong nonlinearities result in a o

long plateau period of the ot

residual HF(mk)” wi?‘\\ — e h Reynolds
@ Only a small number of the n g \\ \

components of the solution may ; ‘ \

undergo significant updates in 4 e \

Newton corrections that are ! \ o I

highly damped by linesearch |

backtracking or trust region o \ \"’“’"““‘"‘

globalization. el L

# Newton iterations Cai & K, SISC 2002

Newton methods may thus waste considerable resources solving
global linear systems in problems that are “nonlinearly stiff’ until
they find the convergence domain. Instances include material
fronts, reaction fronts, shocks, recirculation zones, etc.
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Example: nonlinear stiffness in reservoir problems

Possible sources:

@ High contrast heterogeneous permeability or porosity

@ Strong nonlinearity of relative permeability functions

@ Spatially varying capillary pressure

@ Faults, channels, and voids
These may cause Newton to damp to death, or require small
timesteps to robustify Newton's method.

The latter erodes the intrinsic advantages of a fully implicit
method, namely:

@ Choosing the timestep adaptively based on temporal truncation error accuracy
requirements alone

@ Going higher than first-order in time
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Quoting the reservoir modeling experts ...

@ “The standard approach in reservoir simulation (and in simulation of carbon
storage) is to use a fully implicit discretization and iteratively solve for all the
primary unknowns at once using Newton's method. This requires repeated
solves of large, ill-conditioned linearized systems of equations.” — Knut-Andreas
Lie (SINTEF) et al., Comp. Geosci., 2021

@ "The standard way to handle nonlinearity is by some variation of Newton
iterations, in which a system of linear equations must be solved for each
iteration. This consumes a considerable amount of the total simulation time,
and methods have been developed ... to reduce the number of Newton
iterations needed.” — Jan Nordbotten (Bergen) et al., JCP, 2013

@ “Multiphase flow introduces strong nonlinearities, and a naive implementation
of Newton's method may fail to converge when large timesteps are taken...

Smart strategies to address the intrinsic nonlinearities in these systems remain

an active area of research.” — Hamdi Tchelepi (Stanford) et al., CMAME, 2019
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Outline

@ Introduction to nonlinear preconditioning
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Enter nonlinear preconditioning

@ A nonlinear “preconditioner” performs nonlinear relaxation
within one or more subsets of equations and unknowns, inside
the context of an outer Newton “accelerator.”

o Analogous to linear preconditioners, such as domain
decomposition or multigrid, inside a Krylov accelerator

e Such linearly preconditioned Krylov methods are often used
inside both the nonlinear subproblems and the global problem

@ A prime consideration in selecting an inner nonlinear
preconditioner is whether the resulting outer nonlinear
problem is amenable to linear preconditioning of the Jacobian.

e Early domain-decomposed left nonlinear preconditioners
ASPIN and MSPIN complicated outer linear preconditioning
by replacing a sparse outer Jacobian with a dense one.

@ Right preconditioners like INB-NE retain the original
(generally sparse) Jacobian.

o Left preconditioner NEPIN (introduced herein) can also

employ the original Jacobian. /61
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Origins of nonlinear preconditioning:

nonlinear “projections” in subspaces

@ Decomposed by domain (nonlinear block Jacobi)

e 1997, On the nonlinear domain decomposition method, M.
Dryja & W. Hackbusch, BIT Numerical Mathematics
37:296-311.

e Decomposed by field (nonlinear block Gauss-Seidel)

e 2009, R. Ernst, B. Flemisch & B. Wohlmuth, A multiplicative

Schwarz method and its application to nonlinear

acoustic-structure interaction, ESAIM Math. Modeling and
Numerical Analysis, 43:487-506.

These contributions lacked an outer Newton accelerator.
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Background for this talk, with mostly KAUST co-authors

[y

2015 Liu & K Field-split preconditioned inexact Newton algorithms SISC
. Convergence analysis for the multiplicative Schwarz
2016 Liu & K . ) . SINUM
preconditioned inexact Newton algorithm
2018 LKI:Ja’uKs:‘ A note on adaptive nonlinear preconditioning techniques SIsC
2020 |Luo, Cai & K Nonlinear preconditioning strateg|e_s for two-phase flows in sisc
porous media
2020 Luo, Cai, Yan,| A multilayer nonlinear elimination preconditioned inexact SISC
Xu & K Newton method for steady-state flows
2021 Liu & K Approximate error bouncfis. on solutions of nonlinearly SISC
preconditioned PDEs
2022 Liu, Hvs{ang, A nonlinear elimination prec_ondmoned inexact Newton SISC
Luo, Cai &K algorithm
Liu, Gao, Yu | Overlapping and nonoverlapping Schwarz preconditioning for
2024 . N Jcp
& K linear and nonlinear systems
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Selected bibliography: school of Xiao-Chuan Cai

2002 C&K Nonlinearly preconditioned inexact Newton algorithms SISC
i Inexact Newton methods with restricted additive Schwarz based
2011 C&Li . R . . . . SISC
nonlinear elimination for problems with high local nonlinearity
2015 Huang, Su | A parallel adaptive nonlinear eI|m_|nat|on preco_nd|t|onefi inexact Comp Fluids
&C Newton method for transonic full potential equation
2016 Yang, A nonlinearly preconditioned inexact Newton algorithm for SISC
Huang & C steady state lattice Boltzmann equations
2016 Yang, Nonlinear preconditioning techniques for full-space Lagrange- SISC
Huang & C Newton solution of PDE-constrained optimization problems
2019 | Gong &C A nonlinear elimination preconditioned |nexz{cF Newton method SISC
for heterogeneous hyperelasticity
Luo, Shiu, | A nonlinear elimination preconditioned inexact Newton method
2019 . . . Jjcp
Chen & C for blood flow problems in human artery with stenosis
2023 | Lwo &€ Preconditioned |ne?(act Newton with Iear'nlng capability for SISC
nonlinear system of equations
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Selected bibliography: school of Axel Klawonn

2014 | K Lanser& Nonlinear FETI-DP and BDDC methods sisc
Rheinbach
2015 K, Lanser & | Toward extremely scalable nonlinear domain decomposition SINUM
Rheinbach methods for elliptic partial differential equations
K 'Lanser, Nonlinear FETI-DP and BDDC methods: a unified framework
2017 | Rheinbach & SIsC
and parallel results
Uran
K, Lanser & . i .
2018 i Nonlinear BDDC methods with approximate solvers ETNA
Rheinbach
2020 Heinlein & | Additive and hybrid nonlinear two-level Schwarz methods and sisc
Lanser energy minimizing coarse spaces for unstructured grids
2022 K, Lanser & Adaptive nonlinear elimination in nonlinear FETI-DP methods Proc of
Uran DD26
2023 Heinlein, K & | Adaptive nonlinear domain decomposition methods with an SIsc
Lanser application to the p-Laplacian
2024 | k& Lanser Efficient f'-Jdaptlve_ ellmlnat_lon strat?gles in nonlinear FETI-DP Proc of
methods in combination with adaptive spectral coarse spaces DD27
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Selected bibliography: school of Martin Gander

Dolean, G, Kheriji, |Nonlinear preconditioning: how to use a nonlinear Schwarz
2016 - , SIsC
Kwok & Masson method to precondition Newton's method
. . . i Proc of
2016 G On the origins of linear and nonlinear preconditioning DD23
2021 Chaouqui, G, On the nonlinear Dirichlet-Neumann method and Proc of
Kumbhar & Vanzan preconditioner for Newton's method DD26
. Cycles in Newton-Raphson preconditioned by Schwarz Proc of
2021 McCoid & G
(ASPIN and its cousins) DD26
2022 Chaouqui, G, Linear and nonlln_ear sgbstructured ResFrfcte_d Additive Numer Algs
Kumbhar & Vanzan Schwarz iterations and preconditioning
2023 McCoid & G Cyclic and chaotic examples in Schwarz-preconditioned Proc of
Newton methods DD27

15/61



Introduction
0000000 e000000

2 X 2 X 2 x 2% X n categories of Schwarz preconditioning

Linear and nonlinear

Left and right

Nonoverlapping and overlapping

Additive and multiplicative (and hybrids of the two)

Selection of partitions (by subdomains, by fields, by high
residual points, by high Mach points, etc.)

Our 2024 JCP paper, in a special issue dedicated to the late

Roland Glowinski, closes some gaps in the theory for overlapping
multiplicative methods.
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In Roland Glowinski special issue of J. Comp. Phys.

" " - % somalo
Contents lists available at ScienceDirect oot
Pisics

Journal of Computational Physics

ELSEVIER Journal homepage: wuww.elsevier.com/locate/jep.

Overlapping multiplicative Schwarz preconditioning for linear S |
and nonlinear systems
Lulu Liu**, Weiguo Gao", Han Yu*, David E. Keyes B

Te Nanjing 210094, Clina
* School e, udan U s?m@aL 20045, dina
< School of Conpuer China
‘ i i Technalogy, Than, 239556900, Saud
Arabia

ARTICLE INFO ABSTRACT

epords: For linear and of PDEs, multipli h
Nonliner precondiconing precondiiones ean be defned asedon subses o th ankvyns ha deie o domain
Scwarz methods decomposition, field splitting, or other collections of conveniently solved subproblems, and are

Newton methods for nonlinear lgebraic
systems.

well established theoretically for nonoverlapping subsets. For overlapping subsets, establishing
the equivalence of the preconditioned and original terations s less trivial. We derive herein

support for the nonlinear multiplicative Schwarz preconditioned inexact Newton (MSPIN)
algorithm o these classes. For nonlinear multiplicative Schwarz preconditioners with overlaps,
we illustrate the performance through numerical experiments involving applications such as a
shocked duct flow and a natural convection cavity flow. We begia with 2 broad introduction to
the technique.
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Scope for today

@ A two-component algebraic problem to illustrate

@ Simple PDE flow models to warm up

e 1D and 2D transonic potential flow over an airfoil
e 2D velocity-vorticity incompressible Navier-Stokes in a cavity

e 1D, 2D, and 3D two-phase porous media flow

@ We blaze through derivations and problem posings
o Please see references
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Inexact Newton with Backtracking (INB)

We aim to find a solution z*, such that F'(z*) = 0, starting from
an initial guess 2°, where = (z1,...,2,)7, F = (Fy,...,F,)7,
and F; = F;(z). A new zFT! can be computed via

AR SN LPUS (1)
where \¥ is the scalar step length, and step s* satisfies
175" + F(aF) || < n*(|F(2")]]. (2)

Here J* = F’(2") is the Jacobian matrix, n* € [0,1) is a tolerance
that determines how accurately the Jacobian system needs to be
solved, and \* € [0, 1] is determined by line search on the merit
function || F(zF 4 \ksk)]|2.
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Nonlinear preconditioning

o Left preconditioning: solve “equivalent system” (same root)
with better balanced nonlinearities

F(x)=G(F(x))=0

- refs: Additive Schwarz Preconditioned Inexact Newton
(ASPIN), Cai & K (2002); Multiplicative Schwarz
Preconditioned Inexact Newton (MSPIN), Liu & K (2015);
Restricted Additive Schwarz Preconditioned Exact Newton
(RASPEN), Dolean et al. (2016); Nonlinear Elimination
Preconditioning Inexact Newton (NEPIN), Liu et al. (2022)

e Right preconditioning: start from a better initial guess by
first correcting within a subset of equations:

F(y) =0,y = G(z)

- refs: Nonlinear FETI-DP and BDDC, Klawonn et al. (2014);
Nonlinear Elimination (INB-NE), Hwang et al. (2015) & Luo
et al. (2020)
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Preconditioning: Linear/Nonlinear, Left/Right

Linear preconditioning Nonlinear preconditioning
Fx)=Ax—b=0 F(x)=0
Left: Left:
G(F(x)) =M~'(Ax—b) =0 G(F(x)) =0
o x (M~'A) smaller than « (A) @ G(F(x)) less nonlinearly stiff than F(x)
@ F(x) =0and G(F(x)) = 0 have same @ F(x) = 0and G(F(x)) = 0 have same
solution solution
@ Linear system is changed @ Nonlinear system is changed
Right: Right:
AM~ly =1, F(y) =0,
y = Mx. y = G(x).
@ Linear system is unchanged @ Nonlinear system is unchanged

21/61



Introduction
0000000000000

Caution, with apologies to Tolstoy*

“All linear problems are alike;
each nonlinear problem is nonlinear in its own way.”

* see first line of Anna Karenina (1878)
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Outline

© NEPIN: Nonlinear Elimination Preconditioned Inexact Newton
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Pedagogical example with two equations in two unknowns

re=[ B -

log(IF(x)I[+1)

05

T+ 229 — 3

0
-0.5 0 0.5 1

— 3+ 1)° — 2

Initial guess: x0=(2,2)

Fi /]

( Contours of log|
-©-INB

—¥-NEPIN

) B

Xy

Figure: Contours of log(]|F(x)| 4 1) and path using Inexact Newton with
Backtracking (INB) (blue circles, 13 steps) and Nonlinear Elimination Preconditioning

Inexact Newton (NEPIN) (red stars, 4 steps) from

same starting point 20 = [2,2]7.
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What happened?

Original system:

v Fi(z1,22) (z1 — a3 +1)° — 25
orig — _ 2 5 | =
F (11317132) = [ Fz(z1,x2) = 1+ 220 — 3 =0 (4)

NEPIN-preconditioned system (analytically derived in this case):
FYEPR (@1, w2) = [ %Eﬁiiig } - [ xlx:ig;;zl:;z } =0 ®)

Table: Number of nonlinear iterations starting from four corners. Relative
tolerance for the global Newton iterations is 1075.

INB [ NEPIN
zo=[0,0]7 [ 10 6
zo=[0,2]7 | 12 4
zo=1[2,00" | 7 6
zo=[2,2]7 | 13 4
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Partitioning for preconditioning

Generalize from two equations to two subsets. The components of
the nonlinear system F(x) = 0 are partitioned heuristically into
two groups, “bad” and “good,” labeled as F} and F, resp.,
according to the degree of nonlinear “stiffness.”

(This is often associated with the components whose residual
exceeds some threshold, or at which some physical feature exceeds
some threshold. Often the “bad” components are relatively few.)

The unknowns principally associated with each equation are split
conformally into = = [z, 74]7:

Fy(zp, zg) }
F(z) = F(zp,2y) = B 6
() = Flay, z,) [ iy (6)
where x;, and x4 are “bad” and “good” components, respectively.
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NEPIN algorithm (2022): basic k' step

1. Solve (inexactly) for the correction T}, to the “bad” unknowns in
Fy(ay” — Ty 2)) = 0 (7)
2. Form modified global residual by replacing “bad” component:

) (k)

I(? (;C('f)) , Jy(zW) = Ry g (zMRE. (8)

k) —

where z(F) = (a:l()k) Ty x(k))
3. Solve (inexactly) for the global Newton direction s(*) in
J(zFN)sk) = — (k) (9)
4. Update the global approximation:
kD) — (k) 4 \(R) g(k) (10)
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How it works

For a given partitioning, the nonlinear elimination preconditioned function

ro-rwa=[ B0 -[RE] w

is obtained by solving the subsystem
Fyp(zp — Tp(z), zg) = 0. (12)

for T, (x). The Jacobian of F(z) can be written in the form of

or, ) ! 2 oh
J(z) = (6%) B;Z 32-3 , where wu, =z — Ty(x).  (13)
Iy Bz, Ozg
Then the Newton correction step
o Ty (x
T(2)é = F(a) = [ FZ((x)) } (14)

is equivalent, upon multiplying the upper block row through by J, = RyJ (up, zg)RY,
to

T(up, 29)8 = [ ";ff(’g) } _ F. (15)
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Example: 1D shocked duct flow*

Consider inviscid, irrotational, compressible flow passing through a duct with variable
cross-section area, a quasi-1D problem with model for velocity potential ¢(x):

(A@)p(®)¢pz)s =0, 0<z <2, (16)
#(0) =0, ¢(2) = ¢r, (17)

where the duct area and the density are given by

A(x) = 0.4+ 0.6(z — 1), p(¢) = (1 + %_1(1 - ¢§)) . (18)

14

1.2

Mach number
o 9o

x=1

o
o
o
X o - —
o
N
o
=3
o
o
N

* Cai, K & Young, Boeing Technical Report (2001)
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Example: 1D shocked duct flow (¢r = 1.15)

) —lter0
—lter 1
12
Iter 2
) ¢R=115 —lter3
, ‘ —lter5
hel
_g 5 b
B 5 — lter
: S0 — Iter 30
: 5
E E — Iter 40
: =
Z £ Iter 55
2 INB: h=1/32 =
[ INB: h=1/64
Z INB: h=1/128 o
s eeee INB: h=1/256
€y | ~E—NEPIN: h=1/32
5 ~6—NEPIN: h=1/64 02
a : —4—NEPIN: h=1/128
H —%—NEPIN: h=1/256
. . . . L . . y y ’
T S i 0 02 04 06 08 1 12 14 16 18 2
Newton steps '

Figure: Left: history of the Newton residual using INB and NEPIN for
increasing resolution with mesh size h = 35, &1, T35 555 Right: history
of Mach number profiles for the dotted blue residual plot (INB at

h =1/128). For ¢ = 1.15.
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1D shocked duct flow (¢ = 1.15)

NEPIN

—lter 1
—lter2
Iter 5
—lter8
—Iter 10
Iter 13

Mach number

2 "bad": [0.5,1.3]

X
Figure: History of Mach number profiles for NEPIN. For ¢ = 1.15, with
“bad” unknowns in a fixed interval around the throat of the nozzle
NEPIN requires 13 global Newton iterations, each of which requires
solving approximately a nonlinear subproblem. INB without
preconditioning requires 55 global Newton iterations.
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Example: 2D transonic full potential flow

Consider transonic flow around an airfoil, which is described by the scalar full potential
equation, derived for inviscid, irrotational, isentropic compressible flow as:

V- (p(®)VP) =0, (19)

where & is the velocity potential, and V® = [u,v]T is the velocity field. The density
function p is computed by

)= e (14 5 i (1 T2 )7 @)

950

with suitable upwinding, as in the Boeing TRANAIR code [Young et al., JCP 1991].
The oo subscripts refer to the “freestream” far from the wing; here poo = ¢oo = 1.0
and Mo = 0.8 (subsonic).

Br,y) =«
®(z,y) =0 LICHNES
(o
7
o 9
[‘Ty 0 d—y 0
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Example: 2D transonic full potential flow

Iso-Mach lines at M o= 0.8 Pressure coefficient at Moo =08

Figure: Left: Mach number countours. Right: pressure coefficient C),
curve (right) along the upper surface of the wing. For freestream
transonic conditions M., = 0.8 on a uniform 512 x 512 mesh.

33/61



NEPIN
0000000000080

Identification of the “bad” components

Define “bad” components as those where the local velocity exceeds
a certain cut-off Mach number, M (z,y) > M..

k=2 k=4 k=7

20 20 250

0
0 50 10 1 200 250 30 0 400 40 50 0 5 100 150 200 250 00 30 400 40 50 0 5 100 150 200 250 300 30 40 450 50
nz=21647 nz 23512 2~ 24567

Figure: The evolution of the “bad” component region using NEPIN for
M., = 0.8 and M, = 0.82, on a uniform 512 x 512 mesh, on the second,
the fourth and the seventh global Newton iterations. Number of bad
components: 21,647 at iteration 2; then 23,512 at iteration 4; then
24,567 at iteration 7.
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rgence history for varying mesh size (A

3 INB on 128 x 128 mesh

107G ‘O INB on 256 x 256 mesh
¥+ INB on 512 x 512 mesh
on 128 x 128 mest
10 on 256 x 256 mest
NEPIN on 512 x 512 mes
— 1%
5 10
3
=]
8 100
<
e
10"
z
1072
107

Newton steps

s INB, 512x512 mesh B NEPIN, 512x512 mesh

035 04 045 05 05 06 065 035 04 045 05 055 06
The convergence history The convergence history

35/61



INB-NE
©00000000000000000000

Outline

© INB-NE: Inexact Newton with Backtracking and Nonlinear
Elimination
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INB-NE algorithm (2011): basic k" step

1. Solve (inexactly) for the correction T}, to the “bad” unknowns in

Fy(af? — Ty, 2P) = 0 (21)
2. Form a shifted starting point
2k = (a:l()k) - Tb,:cgk))T (22)

3. Solve (inexactly) for the global Newton direction s(*) in
J(z k) = — () (23)
4. Update the global approximation:
2D (B) 4 A(B) g(R). (24)
Solving the “bad” equations for the “bad” components with the “good” fixed (Step 1)
and updating the state vector (Step 4), are the same as in NEPIN.
The methods differ in modifying the residual function (NEPIN Step 2) versus the

starting iterate (INB-NE Step 2) before the global correction (Step 3).
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Example: two-phase flows in porous media

Darcy's law and saturation equations for incompressible two-phase

flow:
Uy = _)\aK(vPa - paQVD)a o =w,n,
0
6 4V, = g omwn  (9)
Sw + Sn = 1.
Subscripts w, n represent the wetting (water) and non-wetting (oil)
phases.
Unknowns are velocities u, and saturations s, for phases
a = w,n.

Do Par Qo are, respectively, pressure, density, and external source
or sink for phases a = w, n.
Constitutive assumptions, next slide...
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Constitutive assumptions

o K and ¢ are the absolute permeability tensor and porosity of
the porous media (possibly discontinuous and varying by
orders of magnitude).

@ The mobility function A\, is given by A\, (Sw) = kra(Sw)/tas
for relative permeability ko (sy) and viscosity fiq.

@ The capillary pressure function p.(sy,) is the difference in the
pressure of the two phases p.(Sy) = Pn — Pw-

@ D is the depth at position (x,y, z) and g is the magnitude of
the gravitational acceleration.

The relative permeability and capillary pressure functions are given
as (Van Duijn 1998, Hoteit 2008):

krw(sw) = Sga krn(sw) = (]— - Se)ﬁa

B.

Pe(Sw) :—ﬁlog(se), Se

Sw — Srw

I — S — 8
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Initial and boundary conditions

Initial condition: a domain whose pores are saturated with oil

Swli—o = 2 (=0 typically), in Q.

Boundary conditions:

Let 092 = I'y, U Loy U T, where I';,, denotes the inlet boundary,
"oyt denotes the outlet boundary, and I'g = 0Q \ {T',, U Toue} is
the no-flow boundary.

n n
uw'n: w7un.n: n on Fina
out
Pw =Py s MKVpe-n=0, on Tout,
u, n=0, u, -n=0, on T,

where n is the unit outward normal vector, f.* and f}* are given

flow rates at the inlet.
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Discretization

The problem is discretized by a temporally implicit, spatially
discontinuous Galerkin finite element method:
@ Temporal discretization: backward Euler (first-order for now)
@ Spatial discretization: Non-symmetric Interior Penalty Galerkin (NIPG) method
(Epshteyn & Riviere, Appl. Numer. Math., 2007)
The fully implicit DG discretization results in a nonlinear algebraic
system

F(z) =0 (26)

to be solved at each time step, where x is the vector of unknowns,
which we may manipulate to be s,, and p,,. F(z) is a highly
nonlinear function, where the nonlinearities come from the relative
permeability ko (sw) and the capillary pressure function pe(sy).
Extra difficulties in solving (26) are induced by the heterogeneity of
¢ and K.
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Why discontinuous Galerkin?

Element-wise conservation
Diagonal mass matrices

Tends to have localized errors, allowing sharp a posteriori
error indicators and effective adaptation

Supports nonconforming spaces, incl. unstructured meshes,
nonmatching structured meshes, variable degrees in adjacent
elements, allowing general h—, p—, and hp—adaptivity

Capable of exponential rates of convergence with appropriate
meshing and element order

Allows control of numerical diffusion
Allows rough coefficients and captures discontinuities
Robust and nonoscillatory in the presence of high gradients

Low communication overhead in distributed memory ( “halo”
thickness does not depend upon order)
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Software and Solution

LibMesh (libmesh.github.io) for the finite element construction

piecewise quadratic for pressure

piecewise linear for saturation

PETSc (petsc.org) for the algebraic solution

relative tolerance for outer iteration global inexact Newton convergence on each
timestep: 10~°

relative tolerance for inner inexact Newton convergence: 101

Jacobian and preconditioner evaluated only once per inner Newton iteration and
reused

GMRES restart dimension: 100
overlap parameter for restricted additive Schwarz linear preconditioner: 1 cell

subdomain preconditioner: ILU(2)

Shaheen-2 (hpc.kaust.edu.sa) for the scalable computation

Cray XC-40 with dual socket Intel Haswell nodes and Aries dragonfly network
ranked #7 in the Top 500 in 2015 (now #141)
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Establishing the discretization: 1D Buckley-Leverett (1942)

Wi OoP

Domain dimensions 300 mx1 mx1 m
Distance from W| e———p Rock properties ¢=02, K=1mD
S Fluid properties Py =2 cP, piy, = 3 cP
pw = pn = 1000 kg/m?
Relative permeabilities 8 =2 in (2.8)
Water flood Oil saturated reservoir Capillary pressure B.=0in(2.8)
Residual saturations Spw = 0, 84 = 0.2
. Time, t Injection rate 5 x 10! PV /day
" A-Rosing, 2013
—Exact
1 1 —e—80x1x1
Exact —=—160x1x1
—e—IMPES-TPFA (MRST) —6—320x1x1
0.8 —=—Fully implicit DG 08 ——640x1x1
5 g
2 =
Sos Sos
: :
£04 g 0.4 1
2 g
0.2 0.2 1
0 0
0 50 100 150 200 250 300 250 300

Figure: Left: Exact, IMPES (from MATLAB Reservoir Simulation
Toolbox), and Fully Implicit DG at 300 and 900 days. Right: Exact and
Fully Implicit DG at 900 days at three successive mesh doublings.
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Elimination strategies for two-phase flow

@ Multiplicative field-split approach. A strategy based on the field-splitting of
pressure and saturation. Subspace correction is performed in two stages to
eliminate the pressure components and the saturation components alternatively.

@ Coupled element-block approach. A domain-splitting strategy that keeps
pressure and saturation together within each domain. The strong nonlinearities
of the system are often related to certain critical features that appear in certain
local regions. Herein, when one component defined on a particular element is
selected for pre-elimination, all other components associated with this element
are also pre-eliminated.

Figure: An example for the coupled element-block approach.
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Example: 2D domain with obstacles

Domain dimensions 250 mx250 mx5 m
Rock properties t 6 =02, K =100 mD

heter 6 €[0.01,048], K € [0.00177, 718.69) mD
Fluid properties Jw (P)/pn (cP) = 1/1,1/2,1/4

P kg/m®, pp = 849 kg/m*
Relative permeabilities 3 8)
[

Capillary pressure K in (2.8), B, = 0 — 18 bar-mD!/2
Residual Srw = 0

Injection rate 43.2 m®/day

Production well rw =01 m, s =0, ppy =1 bar [9]

250 [
200 =
Do Y
125
160 [ y | 2'35 -13
. = 135
- 035
5 | 14
% ] 0.3 -14.5
100 = 0.25 -
£ d | 02 15
y 015 155
< 0.1 -18
s0f 185
005 e
o 175
o L | L |
50 100 150 200 250
x

Figure: The mesh (top), porosity (bottom left), and log1oK permeability

(bottom right) for a square horizontal domain with obstacles. a6 /61
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INB-NE solutions with various constitutive relationships

(a) Homo., piw/pn = (b) Hetero., pw/pn =
1/2, B.=0 1/2, B.=0

(c) Hetero., pw/pn =  (d) Hetero., pw/pn =
1/2, B.=8 1/4, B. =10

Figure: Wetting saturation at 500 days for oil displacement. /61
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INB vs INB-NE for heterogeneous media

Table: The average numbers of iterations and compute times for
heterogeneous case and 1, /i, = 1/2, without and with capillary
pressure, for middle two cases in previous plots.

Capillary effect Nl Lly T Nne NIne LI Tne
INB

No (Be=0) 236 88 447

Yes (B. = 8) - - -
INB-NE (Multiplicative field-split)

No (B.=0) 7.9 121 3.35 35 5.7 5.7 1.80
Yes (B.=8) 59 117 311 36 58 54 190
INB-NE (Coupled element-block)

No (B.=0) 8.9 13.4 3.24 3.0 4.6 2.3 1.39
Yes (B. = 8) 104 122 3.58 3.1 5.4 2.8 1.49

‘Nl,', avg # of global Newton iterations per time step

‘Ll;", avg # of GMRES iterations per global Newton iteration
‘T,', total compute time in sec per time step

‘Nne', avg # of subspace correction steps in NE per time step
‘NlIng', avg # of Newton iterations per subspace correction in NE
‘LIng’, avg # of GMRES iterations per Newton iteration in NE

‘“Tne’ compute time in sec for all NE applications per time step. 18/61
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Residual history

—e—INB

—e—INB
—*—INB-NE ) component-wise) —+—INB-NE(Saturation component-wise)
—4—INB-NE(Multiplicative field-split) —~—INB-NE(Multiplicative field-split)
10 —&— INB-NE(Coupled element-block) 1068e —=—INB-NE(Coupled element-block)
1 y N
INB fails in line search
5 107 5 10"
S S
3 3
2 102 g 10°
[ [
10° 10°
10* 10*
10° 10°
0 5 10 15 20 25 0 5 10 15 20 25
Global Newton iteration Global Newton iteration
(a) Case 2 (pw/pn =1/2, Bc =0) (b) Case 3 (pw/pn = 1/2, Bc = 8)

Figure: Nonlinear residual history at the 1%¢, 5", 10" time steps, using
INB and INB-NE for case g, /11, = 1/2. Left: B, = 0. Right: B, = 8.
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Step length

—o6—INB
—A— INB-NE(Multiplicative field-split)
—=—INB-NE(Coupled element-block)

S

Step length
o o
[e2] o

©
'S

INB fails in line search |

o
o

o

2 4 6 8
Global Newton iteration

Figure: Step length \* at the 1°¢ time step, using INB and INB-NE for
case fhy/pn =1/2, B, = 8.
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Before and after NE / multiplicative field-split

03

02
0.1
0

(a) before NE, 2™* Newton, 1 timestep

b b A 4 o

0.005

!
I

0

(b) after NE, 2"? Newton, 1° timestep — note scale change!

Figure: Left: saturation residual. Right: pressure residual.
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Before and after NE / coupled element-block

03

02
0.1
0

(a) before NE, 2™* Newton, 1 timestep

002

0

002

004
| - E
0

(b) after NE, 2"? Newton, 1° timestep — note scale change!

b b A 4 o

n

Figure: Left: saturation residual. Right: pressure residual.
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Element-block elimination

(a) Wetting satura-  (b) Wetting satura-
tion, 200" step tion, 400" step

(c) Bad subset (d) Bad subset

Figure: Results at 2"? global Newton iteration at the 200" time step
(left) and 400" time step (right) for case piy,/pin = 1/2, B. = 0.
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Residual of wetting saturation

(c) after NE, 200" step (d) after NE, 400*" step

Figure: Results at the 2"? global Newton iteration at the 200" time step
(left) and the 400" time step (right), using INB-NE (Element-block) for
case fy/ftn =1/2, B, = 0.
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Example: SPE10 setup

Domain dimensions 250 mx250 mx5 m
Rock properties homogeneous: ¢ = 0.2, K = 100 mD
heterogeneous: ¢ € [0.01,0.48], K € [0.00177, 718.69] mD
Fluid properties prw (€P)/pn (cP) =1/1,1/2,1/4
puw = 1025 kg/m>, pp = 849 kg/m?
Relative permeabilities 8 =2 in (2.8)

Capillary pressure B. = B./VK in (2.8), B, = 0 — 18 bar-mD!/2
Residual saturations Srw =0, $pn =0

Injection rate 43.2 m*/day

Production well row =0.1m, s =0, ppp, = 1 bar [9]

005 01 045 02 025 0.3 035 0.4 045

1B 175 17 185 16 155 -15 -1a5 <4 -135 13 2125 42 15 -1

(a) Porosity (b) Permeability (logi0Kyy)
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Example: SPE10 results

0102030405060708 T

(c) Top layer sat at t = 850

[——INB
——INB —— INB-NE(Multplicative field-spiit)
—a— INB-NE(Multiplicativo field-spiit) —=—INB-NE(Coupled element-block)
—o— INB-NE(Coupled element-block) [= = —Ideal

Residual
Compute time (s)

0 10 20 30 40 256 512 1024 2048
Global Newton iteration Number of processor cores

(e) Residuals at the 6',  (f) Strong scaling with
8", and 10*" time steps 689,920 DOFs
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Conclusions

@ Nonlinear preconditioners can be effective in improving on the
convergence of global Inexact Newton with Backtracking
(INB) iterations.

o They robustify Newton's method, often obviating the need for
other globalization methods, by going to the core of the
difficulty — removing a few components of the correction that
require severe damping.

@ Nonlinear preconditioning expends extra local computational
cost for the solution of nonlinear subproblems to reduce the
computation, communication, and synchronization costs of
the global outer iterations, by reducing their number.
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Future Work

@ Better or more automated identification of “bad”
components.

o "Cascadic” ideas, wherein one starts with a small cluster of
“bad” points and enlarges in a multistage nonlinear elimination
process, have proved effective (Luo et al, SISC 2020).

e Machine learning is proving effective (Luo et al, SISC 2023).

@ Use of dynamic runtime systems to better allocate work in
parallel implementations, in view of the imbalanced work of
the inner nonlinear iterations.

o Different preconditioning subproblems have different nonlinear
difficulty.

e Some outer iteration tasks (but not a synchronous full
iteration!) can overlap with preconditioning subproblems.

e Fully asynchronous nonlinear iterations (within each time step
for time-implicit problems or overall for steady-state
problems).
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New applications call for new ideas

. at this very moment the search is on —
every numerical analyst has a favorite preconditioner,
and you have a perfect chance to find a better one.”

— Gil Strang (1986), Introduction to Applied Mathematics

Your intuition is needed and your collaboration is invited!
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